.
., . s«

oS

WILMA Er e TR
(S)Dlj\l[% OLENTANGY RIVER
whvemad WETLAND RESEARCH PARK

ldentification and enhancement of the ecosystem
services from created and restored wetlands

o
#.

Olentangy Rlver Wetlands to the Florida Everglades to the Planet

‘v“- {»\. P g ‘ . -

“William J. Mltsch Ph.

Director, Wilma H. Schiermeier Olentangy River Wetland Research Park
Distinguished Professor, School of Environment and Natural Resources
The Ohio State University



Outline

Ecosystem Services and Ecological
Engineering
Olentangy River Wetlands—Ecosystem

development and nutrient retention in the
Mississippi-Ohio-Missouri (MOM) River Basin

Florida Everglades—Phosphorus retention by
wetlands at low concentrations

The Planet—Carbon sequestration and
methane emissions in wetlands

Conclusions



CONSTITUENTS OF WELL-BEING

Supporting
NUTRIENT CYCLING
SOIL FORMATION

FRIMARY PRODUCTION

ECOSYSTEM SERVICES

Provisioning
FOOD
FRESH WATER
WOOD AND FIBER
FUEL

Regulating
CLIMATE REGULATION
FLOOD REGULATION
DISEASE REGULATION
WATER PURIFICATION

Cultural

AESTHETIC
SPIRITUAL
EDUCATIOMAL
RECREATIOMAL

LIFE ON EARTH - BIODIVERSITY

ARROW'S COLOR
Potential for mediation by
socioeconomic factors

Low

P Medium
B High

ARROW'S WIDTH

Intensity of linkages between ecosysiem
services and human well-being

C— Medium

[ ] Strong

Security
PERSOMAL SAFETY
SECURE RESOURCE ACCESS
SECURITY FROM DISASTERS

Basic material

for good life
ADEQUATE LIVELHOODS
SUFFICIENT NUTRITIOUS FOOD
SHELTER
ACCESS TO GOODS

Health

STREMGTH

FEELIMNG WELL
ACCESS TO CLEAM AIR
AND WATER

Good social relations

SOCIAL COHESION

MUTUAL RESPECT
ABILITY TO HELP OTHERS

Freedom
of choice
and action

OPPORTUNITY TO BE
AELE TO ACHIEVE
WHAT AM INDIVIDUAL
VALUES DOIMNG
AND BEING

Source: Millennium Ecosystam Assassmeant



Millennium
Ecosystem
Assessment
"Regulating”
ECOSYSTEM
SERVICES

related to wetlands
 Climate regulation

 Flood regulation
« Water purification

Ref: Millennium Ecosystem
Assessment, 2005




The Spectrum of Ecological Engineering
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The Mississippi-Ohio-Missouri
River Basin
and
The Olentangy River Wetlands
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Wilma H. Schiermeier Olentangy River Wetland Research Park
at The Ohio State University
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CONVENTION ON WETLANDS
(Ramsar, Iran, 1971)

This is to certify that

Wilma H. Schiermeier Olentangy
River Wetland Research Park.

has been designated as a

Wetland of International Importance

and has been included in the
List of Wetlands of International Importance
established by Article 2.1 of the Convention.
This is site No.: 1779

Secretary General
Date of designation 18 April 2008 Convention on Wetlands



Whole ecosystem experiment

1994 - 2010
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Original Planting in experimental wetland 1

Cephalanthus occidentalis

Mudflat : Aug 95
Saururus cernuus Aug 94
B Jun 94

*Juncus effusus
Pontederia cordata
**Sagittaria latifolia

*Acorus calamus
**Sparganium eurycarpum
*Spartina pectinata
*Potamogeton pectinatus
Nymphaea odorata

*Nelumbo lutea
**Scirpus fluviatilis

**Schoenoplectus

tabernaemontani =
0 20 40 60 80

Percent survival

* present in 2010 s*ahundant in 2010

Deepwater

Shallow center and edge
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* Identical inflows of river water (approx 30 m/yr) have been
maintained for both wetlands for 17 years.
* Inflows are programmed to relate to the river flow. Inflows to the

wetlands pulse when there are river pulses.
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Olentangy River Wetland Research Park
At The Ohio State University

1995 (year 2) 2008 (year 15)

Mitsch et al. 2012. BioScience 62: 237-250




SOIL DEVELOPMENT

unplanted (W2) experimental wetlands

1993 and 1995 data from Nairn (1996); 2004 data from Anderson et al. (2005)
and Anderson and Mitsch (2006); 2008 data from Bernal and Mitsch (in prep.)

Numbers are averages= std error (number of samples).

Changes in the upper 8 to 10 cm of soil in the planted (W1) and

Mitsch et al. 2012. BioScience 62: 237-250

Wetland Bulk Density, g cm™® Percent of soil Soil Carbon, g-C/kg soil
YEAR age, yr WA1 W2 samples with chroma Wi1 W2
less than or equal to 2
1993 -1 1.320.01 (19) | 1.29+0.01 (21) 0% 16 £0.1(19) 16 £0.2 (21)
1995 1 1.0£0.01 (19) | 0.730.01 (21) 78% 20 + 0.3 (19) 20 +0.3 (21)
2004 10 0.53 +0.02 (33) | 0.49+0.03 (36) 100% 39 +1.0 (22) 38+ 2.0 (24)
0.60+0.02 (13) | 0.72+0.01 (18) 100% 41 +1.8 (5) 49+ 0.8 (18)




PLANT RICHNESS

Number of plant species in the planted (W1)* and unplanted (W2)

1996 1998 2010
W1 W2 W1 W2 W1 W2
Total # of 72 99 117
species
# species, each 67 56 96 87 98 95
wetland
Total # wetland 44 57 63
species
(OBL+FACW)
# wetland 43 31 56 46 54 48
species, each
—watiand
Total # planted 9 1 9 2 9 2
wetland
species*
Total # of woody 5 7 15 15 18™* 21**
species
Total # of 1 1 4 4 7 o**
invasive
species**
* from 13 species planted in wetland 1 (W1) in May 1994 (see Mitsch et al. 1998)
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Community Diversity Index

Cumulative productivity, Mg
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Percent change of total
phosphorus, soluble reactive
phosphorus,, and nitrate-
nitrogen in the planted (blue)
and unplanted (red)
experimental wetlands

* Statistical difference between

outflow concentrations (o =
0.05) of two wetlands only 5
times out of 47 possible chances
(10.6%)
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Denitrification rates are
low and have consistently
been less than 10% of the
nitrogen retention in these
wetlands

Denitrification data
from Hernandez and
Mitsch (2007) and
Song et al. (2012).

Wetland | Wetland | Wetland 1 Wetland 2 Both
1 2 2005 2005 wetlands
2004 2004 2008

Hydrologic | Artificial | Artificial | Flood Flood Normal

conditions | spring |spring |pulses pulses river
pulses |pulses |suppressed | suppressed | conditions

Overall 2.5 2.7 1.7 2.3 1.8

denitrification,

g-N m™ per

year

Nitrogen 16 17

accumulation

in soil, g-N m’

® per year

Nitrogen 107 108 08 92 139

surface

inflow, g-N m’

2 per year

Nitrogen 69 80 44 37 56

surface

outflow from

wetland, g-N

m per year

Nitrogen 38 28 54 55 83

retention in

wetland, g-N

m per [

Percent 355 (259 |55.1 59.8 59.7

nitrogen

removal

%nitrogen [ 6.6 9.6 3.1 4.2 3.0

retention due

to

denitrification

% nitrogen 42 61 - - -

retention in

Ssoil
sequestration




Mississippi-Ohio-Missouri (MOM) Basin Restoration
100
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Mississippi-Ohio-Missouri:(MOM) Basin Restoration

~

Mitsch et al. 2C

Created/Restored Wetlands Restored Riparian

. Bottomlands
2 million hectares of these

ecosystems are needed
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The Florida Everglades



Restoring the Florida Everglades

Restoration
Plan

Current
Flow

Historic
Conditions




The Everglades “river of grass” is considered to be an
oligotrophic system primarily dependent on rain water

Excessive nutrients, particularly phosphorus from the
sugar farms in the EAA are loading major amounts of
nutrients to the water conservation areas (WCAS) north of
Everglades National Park.

The nutrients are causing the Everglades to switch from
sawgrass (Cladium jamaicense) to cattail (Typha latifolia
and T. domingensis)

Current directives are requiring that the total phosphorus
concentration of storm water drainage be limited to 10 ppb
(Lg-L), the approximate concentration of phosphorus in
rainfall.
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Stormwater Treatment Areas (STAS) upstream of Everglades
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Stormwater Treatment Areas (STAS) upstream of Everglades




Stormwater Treatment Areas (STAS) upstream of Everglades
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Stormwater Treatment Areas (STAS) upstream of Everglades
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Stormwater Treatment Areas (STAS) upstream of Everglades

P retention rate by Stormwater Treatment Areas (all 6 STAS)
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Stormwater Treatment Area (STA) mesocosm experiment




Ohio State University Wetlanders in the Florida Everglades, March 2011
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Stormwater Treatment Area (STA) mesocosm experiment

Pattern of outflow phosphorus concentrations in cattail (Typha
domingensis), lily (Nymphaea odorata), and submersed aquatic vegetation
(SAV) treatments
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The Planet



Old Global Carbon Budget with Wetlands Featured

At h
Fossil Fuels mosphere
CH 3.4
5,000 - 10,000 COo 740 | CHa
A=+3.2/ A = +0.03/yr
(total released = 170) / +3.2/yr + y
X <
burning/
1.7 clearin
0.4-2.8
Ocean
Tropical Rain
0-75m 630 0.7 Forests 450

e (total rele)ased

rivers =75

ETerres;criaI %
>75m 38,000 coSysiems
1,400 - 2,300
Pools: Pg (=10%° g) Fluxes: Pglyr

Source:Mitsch and Gosselink, 2007



Bloom et al./ Science (10 January 2010) suggested that wetlands and rice paddies
contribute 227 Tg of CH, and that 52 to 58% of methane emissions come from the
tropics. They furthermore conclude that an increase in methane seen from 2003 to
2007 was due primarily due to warming in Arctic and mid-latitudes over that time.

0 30
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-135 -90 -45 0 45 90 135

-135 -90 -45 0 45 90 135

Bloom et al. 2010 Science 327: 322



Wetlands offer one of the best natural environments
for sequestration and long-term storage of carbon....

...... and yet are also natural sources of greenhouse
gases (GHG) to the atmosphere.

Both of these processes are due to the same
anaerobic condition caused by shallow water and
saturated solls that are features of wetlands.



omparison of methane emissions and carbon sequestratio
In 18 wetlands around the world
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* On average, methane emitted from wetlands, as
carbon, is 14% of the wetland’s carbon sequestration.

* This 7.1:1 (sequestration/methane) carbon ratio is
equivalent to 19:5 as CO,, /CH,

* The standard global warming potential (GWP,,) used
by the International Panel on Climate Change (IPCC,
2007) and others to compare methane and carbon
dioxide is now 25:1

* It could be concluded from this simple comparison
that the world’s wetlands are net sources of radiative
forcing on climate.
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Source: Mitsch et al.
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Net carbon retention after 100 simulated years for

21 wetlands
Wetland Latitude, Carbon-neutral Carbon
degrees N years, yr retention,
g-C m2yrt
TROPICAL/SUBTR 10 - 30 0 - 255 194
OPICAL
WETLANDS (n = 6)
TEMPERATE 37 -55 0-36 278
WETLANDS (n=7)
BOREAL 54 - 67 0 — 95* 29

WETLANDS (n = 8)

* two boreal wetlands could never be carbon neutral as they were sources of CO,

Source: Mitsch et al. In press. Landscape Ecology



Wetland area of the world (thousand km? by latitu
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Source: Mitsch and Gosselink,
Lehner and D4ll (2004)



Global carbon sequestration by wetlands

Wetland Net carbon Estimated Area*, Carbon
retention, X 106 km?2 retention,
g-C m2yrt Pg-Clyr

TROPICAL/SUBTR 194 2.9 0.56

OPICAL

WETLANDS

TEMPERATE 278 0.6 0.16

WETLANDS

BOREAL 32 3.5 0.11

PEATLANDS

TOTAL 7.0 0.83

Source: Mitsch et al. In press. Landscape Ecology
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« Created freshwater wetlands can regulate, with some
management, significant amounts of nitrogen and
phosphorus on a sustainable basis.

 However nutrient retention in created and restored
wetlands has not been validated for long periods. Our
studies in Ohio indicate reduced phosphorus retention
over 15 years with high particulate P but sustainable
nitrate retention.

« The STAs in Florida have been effective in keeping
significant amounts of phosphorus from entering the
Everglades, some for a decade. They remain the most
reasonable approach to solve this problem.



« Achieving 10 ppb phosphorus concentrations from
treatment wetlands is problematic. Achieving
concentrations of 20 to 30 ppb consistently is a more
reasonable goal in the Florida Everglades, given the
continued input of nutrients at much higher
concentrations.

« A more appropriate goal for these wetlands is retention
of 1 g-P m~2 yr! overall. To expect more in the long run
might invite disappointment.



« QOur phosphorus mescosm experiment in Florida will
eventually show phosphorus retention after the initial
efflux that probably resulted from the phosphorus-rich
solls used for the study. Three years is a minimum
amount of time for this study to provide useable results.

 Itis likely that the submerged aquatic vegetation (SAV)
mesocosms will show the best nutrient removal at low
Inflow concentrations of phosphorus. This is consistent
with what has been seen in the full-scale treatment
wetlands (STAS) at higher concentrations.



* Most wetlands, if evaluated with the simple 25:1
methane : carbon dioxide ratio used by climate change
policy makers, are net sources of radiative forcing and
hence bad for climate.

* Most wetlands are net sinks of radiative forcing on
climate well within 100 to 200 years when the decay of
methane in the atmosphere is factored in.



* The world’s wetlands, despite being only about 7% of
the terrestrial landscape or <2% of the globe, could be
net sinks for a significant portion (as much as 1 Pg/yr)
of the carbon released by fossil fuel combustion.

« Wetlands can and should be created and restored to
provide nutrient retention, carbon sequestration and
other ecosystem services without great concern of
creating net radiative sources on climate.
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RS 50 4™ INTERNATIONAL ECOSUMMIT

_“ECOLOGICAL
STAINABILITY

. . RESTORING THE PLANET'S
i ECOSYSTEM SERVICES

EcoSummit 2012 will bring together the world's most respected minds in
ecological science to discuss restoring the planet's ecosystems. Come hear
Nobel Prize laureate Elinor Ostrom, Pulitzer Prize winners E.O. Wilson and
Jared Diamond, Kyoto Prize winner Simon Levin, Stockholm Water Prize
laureates Sven Jorgensen and William Mitsch, and many others in the first
conference ever linking the Ecological Society of America (ESA), The
International Association for Ecology (INTECOL) and the Society for
Ecological Restoration International (SER).

Over 1950 abstracts from 100 countries were received by EcoSummit 2012
for presentations in 65 symposia, dozens of general sessions, and hundreds
of poster presentations. More than a dozen professional workshops and
forums with 100 additional participants will also be included in the Program.



After EcoSummit 2012
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